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ABSTRACT

Wavelet-domain hidden Markov models have proven to be
useful tools for statistical signal and image processing. The
hidden Markov tree (HMT) model captures the key features
of the joint statistics of the wavelet coeÆcients of real-world
data. One potential drawback to the HMT framework is the
need for computationally expensive iterative training (using
the EM algorithm, for example). In this paper, we propose
two reduced-parameter HMT models that capture the general
structure of a broad class of grayscale images. The image
HMT (iHMT) model leverages the fact that for a large class
of images the structure of the HMT is self-similar across
scale. This allows us to reduce the complexity of the iHMT
to just nine easily trained parameters (independent of the
size of the image and the number of wavelet scales). In the
universal HMT (uHMT) we take a Bayesian approach and
�x these nine parameters. The uHMT requires no training
of any kind. While simple, we show using a series of im-
age estimation/denoising experiments that these two new
models retain nearly all of the key structures modeled by
the full HMT. Based on these new models, we develop a
shift-invariant wavelet denoising scheme that outperforms
all algorithms in the current literature.

1. INTRODUCTION

Statistical image processing problems, such as estimation,
detection, and classi�cation, rely on knowledge of the joint
probability density function (pdf), f(x), of the image x.
Since f(x) is usually not known or is too complex to spec-
ify exactly, models that accurately approximate f(x) are
critical to image processing algorithms.

There have been several approaches to modeling the lo-
cal joint statistics of image pixels in the spatial domain, the
Markov random �eld model [1] being the most prevalent.
However, spatial-domain models are limited in their ability
to describe large-scale behavior. Markov random �eld mod-
els can be improved by incorporating a larger neighborhood
of pixels, but this rapidly increases their complexity.

Transform-domain models are based on the idea that
often a linear, invertible transform will \restructure" the
image, leaving transform coeÆcients whose structure is sim-
pler to model. Real-world images are well characterized by
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their singularity (edge and ridge) structure. The wavelet
transform captures this singularity structure, and provides
a natural and powerful domain for image modeling [2]. We
aim, therefore, to model the joint pdf of the wavelet coeÆ-
cients w of an image, and design wavelet-domain processing
algorithms based on this model of f(w).

2. IMAGES IN THE WAVELET DOMAIN

The wavelet transform is an atomic decomposition of an im-
age with basis functions that are shifted and dilated versions
of an oscillating mother wavelet [2]. The primary proper-
ties of wavelet transforms make wavelet-domain statistical
image processing attractive [2, 3]:

P1. Locality: Each wavelet coeÆcient represents the im-
age content localized in spatial location and frequency.

P2. Multiresolution: The wavelet transform represents
the image at a nested set of scales.

P3. Edge Detection: Wavelets act as local edge detec-
tors. The edges in the image are represented by large
wavelet coeÆcients at the corresponding spatial loca-
tions.

P4. Decorrelation: The wavelet coeÆcients of real-world
images tend to be approximately decorrelated.

P5. Energy Compaction: The wavelet transforms of
real-world images tend to be sparse. A wavelet co-
eÆcient is large only if edges are present within the
support of the wavelet.

Properties P1 and P2 lead to a natural arrangement of
the wavelet coeÆcients in a quadtree structure with three
subbands representing the horizontal, vertical, and diago-
nal edges in the image (see Fig. 1). The Compaction prop-
erty (P5) follows from the fact that the edges constitute
only a very small portion of a typical image; consequently,
we can closely approximate an image by just a few (large)
wavelet coeÆcients. Furthermore, the Decorrelation prop-
erty (P4) indicates that the dependencies between wavelet
coeÆcients are predominantly local. The primary proper-
ties give wavelet transforms signi�cant structure, which we
codify in the following secondary properties:

S1. NonGaussianity: The wavelet coeÆcients have peaky,
heavy-tailed marginal distributions.

S2. Persistency: Large/small values of wavelet coeÆ-
cients tend to propagate through the scales of the
quadtrees.

NonGaussianity follows immediately from Energy Compaction
(P5). Persistency follows from the Edge Detection (P3)
and Multiresolution (P2) properties.
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In general, the wavelet coeÆcients w are indexed by two
integers: one for the scale (dilation), and one for the shift.
In this paper, we will adopt an abstract indexing system
and use only one integer whose value ranges from 1 to N2

for an N �N image.

3. HIDDEN MARKOV TREE MODELS

The secondary properties of wavelet transforms give rise to
joint wavelet statistics that are succinctly captured by the
wavelet-domain hidden Markov tree (HMT) model, intro-
duced by Crouse et al. (see [4] for a more detailed discus-
sion).

The HMT models the nonGaussian marginal pdf f(wi)
(S1) as a Gaussian mixture whose components are labeled
by a hidden state Si 2 S; L. The Si dictate from which of
the two components in the mixture model wi is drawn, and
thus characterize (in the statistical sense) the magnitude
of wi. State S corresponds to a zero-mean, low-variance
Gaussian, while state L corresponds to a zero-mean, high-
variance Gaussian. If we let

g(x;�; �2) :=
1p
2��

exp

�
� (x� �)2

2�2

�
(1)

denote the Gaussian pdf, then we can write

f(wijSi = S) := g(wi; 0; �
2
S;i); (2)

f(wijSi = L) := g(wi; 0; �
2
L;i) (3)

with �2
L > �2

S . The marginal pdf f(wi) is the convex com-
bination of the conditional densities

f(wi) = pSig(wi; 0; �
2
S;i) + pLig(wi; 0; �

2
L;i); (4)

with pSi = 1 � pLi . The pSi and pLi can be interpreted as
the probability that wi is small or large (in the statistical
sense), respectively.

The persistence of wavelet coeÆcient magnitudes across
scale (S2) is modeled by linking the hidden states in a
Markov tree. The resulting dependency graph has a quadtree
topology that mirrors the quadtree topology of the wavelet
coeÆcients, see Fig. 1(b). Each subband is represented with
its own quadtree; this assumes that the subbands are sta-
tistically independent.

Each parent!child state-to-state link has a correspond-
ing transition matrix that quanti�es statistically the degree
of persistence of large/small coeÆcients:

Ai :=

�
pS!S
i pS!L

i

pL!S
i pL!L

i

�
(5)

with pS!L
i = 1 � pS!S

i and pL!S
i = 1� pL!L

i .
Denote the parameters needed to specify a HMT model

by the vector �. Members of � are the mixture variances
for each state, �S;i and �L;i, the transition probabilities p

S!S

i

and pL!L
i , and a mass function for the hidden state of the

root node, pL0. These parameters can be �t to a given set
of training data using the Expectation-Maximization (EM)
algorithm [4]. The training yields an approximate maxi-
mum likelihood estimate of the model parameters given the
training data, yielding a good approximation of the joint
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Figure 1: (a) Quadtree organization of the wavelet coef-
�cients. The four children wavelet coeÆcients divide the
spatial localization of the parent coeÆcient. (b) 2-D HMT
model. Each black node is a wavelet coeÆcient; each white
node is the corresponding hidden state. Links represent
dependencies between states.

density function f(w) of the wavelet coeÆcients and thus
f(x).

In general, the HMT model for an N � N image has
approximately 4n parameters, with n := N2. In some ap-
plications, this large number of parameters could make the
HMT model cumbersome. To accurately specify 4n param-
eters for an n-pixel image requires signi�cant a priori infor-
mation about the image. If this information is unavailable,
we run the risk of over-�tting the model. Crouse et al. [4]
reduces the total number of HMT parameters to approxi-
mately 4L, with L the number of wavelet scales (typically
4{10), by tying within scale. While a signi�cant reduction,
a large quantity of a priori image information is still re-
quired to specify the parameters without over-�tting.

Often, the a priori image information takes the form of
training data. Training algorithms such as the EM algo-
rithm, especially for large data sets or data that have been
severely corrupted by noise, can be computationally pro-
hibitive. This makes the wavelet HMT model impractical
for applications requiring computationally eÆcient process-
ing. Furthermore, in many applications training data is
unavailable. In such cases, an empirical Bayesian approach
could be taken and a model �t to the data at hand. This
is an e�ective approach if processing time is not an issue
(see denoising examples in Fig. 2). However, if the ob-
served data is severely corrupted (by noise, for example),
then training may not be robust, and the model parameters
will not characterize the joint image pdf accurately.

To address these problems, we will reduce the num-
ber of parameters in the HMT model. In doing this, the
HMTmodel will become less accurate; two images that have
di�erent parameterizations with the general form of the
HMT may have the same parameterization in the reduced-
parameter model. What we gain is a reduction in complex-
ity; less a priori information will be needed to specify the
model parameters, and training will become more robust.



4. REDUCED-PARAMETER

HMT IMAGE MODELS

Crouse et al. assumed that every image has a di�erent HMT
model, with the 4L parameters being speci�ed by training
on an observation [4]. In this section we take a di�erent
approach. We specify a new HMT model, called the iHMT,
with a drastically reduced set of parameters (only 9), that
incorporates properties common to all images in a class.
The parameterization of the iHMT is based on the fact
that for real-world images, the structure of the HMT is
self-similar across scale [5].

Furthermore, we have found that many real-world im-
ages have similar iHMT parameters. By �xing one set of pa-
rameters, called the universal HMT (uHMT), we can take a
strictly Bayesian approach to the estimation problem, elim-
inating the need for training altogether.

4.1. Tertiary Properties of the Wavelet CoeÆcients

The wavelet transforms of real-world images exhibit addi-
tional strong statistical properties in addition to the pri-
mary (P1{P5) and the secondary (S1,S2) properties. In
designing our reduced-parameter HMTmodels, we will lever-
age the following tertiary properties of wavelet transform:

T1. Exponential decay across scale: The magnitudes
of the wavelet coeÆcients of real-world images tend
to decay exponentially across scale.

T2. Stronger persistence at �ner scales: The persis-
tence of large/small wavelet coeÆcient magnitudes
becomes stronger at �ner scales.

The exponential decay property (T1) stems from the
overall smoothness and self-similarity of images. Roughly
speaking, a typical real-world image consists of smooth re-
gions separated by a �nite number of discontinuities. This
results in a 1=f -type spectral behavior, which leads to the
exponential decay of the wavelet coeÆcients across scale [2].

We can obtain intuition behind property T2 by consid-
ering the simple yet powerful image model of Cohen and
D'Ales [6]. They model an image as piecewise smooth with
a �nite number of discontinuities. Consider a 1-D slice from
such an image. Clearly it is also piecewise smooth with a
�nite number (say M) of discontinuities.

Since there are a �nite number of discontinuities and
the spatial resolution of the wavelet coeÆcients becomes
�ner as j increases (P2), there is some jcrit such that for
all j � jcrit, each wavelet basis function has at most one
discontinuity inside its spatial support. We call this condi-
tion isolation of the edges. Given no a priori information
about the locations of the discontinuities, the fact that the
spatial resolutions of the wavelet coeÆcients become �ner
exponentially implies that the probability that every edge
is isolated goes to 1 exponentially.

ByP4, for �ne scales such that j � jcrit there will be on
the order of M wavelet coeÆcients that are \large" when
compared to other coeÆcients at the same scale (exactly
M if we are using the Haar wavelet). Each of these large
coeÆcients will also have a large child, since the children
wavelet basis functions simply divide up the spatial support
of the parent. Each of the small coeÆcients' children will

have small children, since there is no chance for any of them
to encounter an edge.

In 2-D, the situation is similar except that instead of a
discontinuities at points, we now have discontinuities along
curves. At jcrit, all wavelet basis functions that have spatial
support intersecting this curve will be \large." Again, each
of these coeÆcients will also have at least one large child,
while the small coeÆcients will spawn only small children.

4.2. The iHMT model

Based on the tertiary properties of the wavelet transforms
of real-world images, we can specify the HMTmodel param-
eters in a hyper-parametric form. The coeÆcient decay and
the change in coeÆcient persistence are easily modeled by
imposing structure on how the mixture variances and state
transition probabilities change across scale. Because the
tertiary properties are common to many real-world images,
the resulting model describes the common overall behavior
of real-world images in the wavelet domain.

We can easily model the exponential decay of wavelet
coeÆcients (T1) through the mixture variances of the HMT
model. Since the HMT mixture variances characterize the
magnitudes of the wavelet coeÆcients, we will require that
they decay exponentially across scale:

�2
S;j = C�S2

�j2�S ; (6)

�2
L;j = C�L2

�j2�L : (7)

To have �2
S;j < �2

L;j for all scales, we require �S � �L. The
result is an HMT for images with 1=f power spectra.

We will model the change in the degree of coeÆcient
magnitude persistency by considering the way that the state
transition probabilities change across scale.

Again, consider a 1-D signal consisting of smooth re-
gions havingM jump discontinuities. The isolation of edges
at �ne scales controls the persistency and novelty probabil-
ities (and hence the form of the transition matrix) in the
HMT. If each of theM edges in the 1-D slice is isolated then
there is no opportunity for a novel large coeÆcient to come
from a small parent; the only way a coeÆcient can be large
is if its parent is large. Thus, pS!L

j ! 0 exponentially as

j !1. In other words, pS!S
j ! 1, since once a wavelet ba-

sis function lies over a smooth region, all of its children also
lie over that smooth region. If a basis function lies over an
edge, one and only one of its children will lie over the edge.
This is an exact statement for the Haar basis functions,
and a close approximation for longer wavelets. Therefore,
the large wavelet coeÆcient gives rise to one large and one
small wavelet coeÆcient and pL!L

j ! 1
2
. For a more in-

depth analysis, see [5]
The edge isolation probability going to 1 exponentially

means that the asymptotic values for persistency and nov-
elty parameters are also approached exponentially. This
gives a state transition matrix (see (5)) speci�ed by four
parameters:

Aj =

�
1�CSS2

�
Sj CSS2
�
Sj

1
2
� CLL2

�
Lj 1
2
+ CLL2

�
Lj

�
: (8)

The only parameter in the HMT not yet accounted for
is the probability mass function on the hidden state value



of the root coeÆcients (just one number in our case, pLj0 ,
since the hidden state can only take two di�erent vales).
Taking this parameter as is, we have reduced the number
of parameters that specify the iHMT model to nine:

�i =
�
�S; �L; C�S; C�L ; 
S; 
L; CSS; CLL; p

L
j0

	
: (9)

4.3. A \universal" iHMT: The uHMT

Now that we have an image model speci�ed by a small set
of parameters �i, we must �nd a way of determining them.
The �rst possibility would be to derive a constrained EM
algorithm to give pseudo-MLE estimates of �i given train-
ing data. Deriving the steps for this algorithm is diÆcult,
and there is no guarantee that the training would be faster
than in the unconstrained case.

Another possibility is to �x the parameters directly.
This yields an iHMT model for a class of images, with each
member in the class being treated as statistically equivalent.
Although we clearly lose accuracy by viewing all images of
interest as statistically equivalent, we totally eliminate the
need for training. This saves us a tremendous amount of
computation. For example, on a 512 � 512 image the EM
algorithm can take anywhere from minutes to hours to con-
verge on a typical workstation.

To see how much variation in iHMT parameters there is
across grayscale, photograph-like images, we trained HMT
models for a set of normalized images and examined their
parameters. The variance and persistence decays were mea-
sured by �tting a line to the log of the variance vs. scale
for each state. The decays were very similar for all of the
images. Since the images were normalized, the range over
which the variances decayed was similar as well. These ob-
servations lead us to believe that a speci�c, \universal" set
of iHMT parameters can reasonably characterize photograph-
like images. We call the HMT with this set of parameters
the uHMT model.

The simplicity of the uHMT model also allows us to
apply it in situations where the cost of a standard HMT
would be prohibitive. For instance, we have developed a
fast O(n log n) shift-invariant estimation scheme (discussed
brie
y in Section 5 and in detail in [5]) based on the uHMT
parameters that delivers state-of-the-art performance (see
Fig. 2).

5. APPLICATION TO IMAGE DENOISING

To demonstrate the e�ectiveness of the uHMT for modeling
an image's wavelet coeÆcients, we estimate an image sub-
merged in additive white Gaussian noise. Translated into
the wavelet domain, the problem is as follows:

given y = w + n; estimate w; (10)

where n is a Gaussian random �eld whose components are
independent and identically distributed with zero mean and
known variance �2

n.
Since we are viewing w as a realization of a random

�eld whose joint pdf is modeled by the HMT, we take a
Bayesian approach to the estimation problem. The con-
ditional density f(yjw) is given by the problem; it is an
independent, Gaussian random �eld with mean w. Using

the HMT model for f(w), we can solve the Bayes equation
for the posterior f(wjy).

To obtain the model parameters, Crouse et al. takes
an empirical Bayesian approach [4]. The HMT parameters
used to model f(wj�) are �rst estimated from the observed
noisy data y and then \plugged-in" to the Bayes equation
(after accounting for the noise).

For the Bayes estimator, we calculate the conditional
mean of the posterior f(wjy;�) using the pointwise trans-
formation

bwi = E[wijy;�] =
X
q

p(Si = qjy;�)
�2
q;i

�2
n + �2

q;i

yi (11)

to obtain the minimum mean-square estimate (MMSE) of
w. Results using the empirical Bayesian HMT estimator,
shown in Fig. 2(d) and Table 1, are competitive in both
visual quality and PSNR to redundant wavelet shrinkage.

With the uHMT parameters, we have a prior on w and
the estimation problem can be approached from a purely
Bayesian standpoint. Since we have eliminated training,
the estimation algorithm is truly O(n) and takes only a few
seconds to run on a workstation.

To test this new Bayesian estimator, we denoised a set
of images using the uHMT with parameters: �L = �S =
5=4, C�S = 27, C�L = 213, 
S = 
L = 1, CSS = CLL =
32=5, and pL0 = 1=2. The results, given in Table 1 and Fig.
2(e), are almost identical to the more complicated empirical
Bayes HMT approach, suggesting that we have lost almost
nothing by totally eliminating training.

Image estimates obtained using an orthogonal wavelet
transform frequently exhibit visual artifacts, usually in the
form of ringing around edges. These artifacts can be com-
batted by averaging together estimates obtained from all
di�erent shifts of the image [7]. The resulting shift-invariant
estimate is given by

bx = Average(S�k;�m(D(Sk;m(y))))0�k;m�N�1 (12)

where Sk;m(y) = y(s � k; t � m) is the 2-D shift opera-
tor and D denotes the estimator (11). Implementing (12)
directly would have computational complexity O(n2) and
would thus be infeasible for large images. To streamline the
algorithm, we must exploit the redundancies in the wavelet
representations between di�erent shifts of the image.

In the wavelet domain, each shift of the image cor-
responds to a di�erent tree of wavelet coeÆcients. The
wavelet coeÆcient trees for di�erent shifts overlap, with
common coeÆcients occupying entire subtrees. Averag-
ing estimates for di�erent shifts amounts to averaging the
p(Si = qjy;�) for each tree in which wi appears, and then
using the result in (11) (we assume that � is the same for
each shift of the image). The way in which the wavelet co-
eÆcient trees of di�erent shifts overlap allows an O(n log n)
shift-invariant denoising algorithm [5]. The results of Ta-
ble 1 and Fig. 2(f) indicate that this denoising algorithm
de�nes the new state-of-the-art: in general, we gain a 1{
1.5 dB gain over thresholding with the redundant wavelet
transform [7, 8].
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Figure 2: (a) Original 256 � 256 \Boats" image; (b)
Noisy boats image, with �n = 0:1, PSNR=20dB. Boats
image denoised using (c) redundant hard-thresholding
using empirical best threshold [8], PSNR=26.3dB; (d)
empirical Bayesian HMT estimator [4] PSNR=26.5dB;
(e) uHMT Bayesian estimator, PSNR=26.4dB; (f) shift-
invariant uHMT estimator, PSNR=27.4dB.

6. CONCLUSIONS

Hidden Markov Trees capture the primary aspects of image
structure in the wavelet domain. In this paper, we have
shown that additional image structure can be exploited by
constraining the HMT parameters to have a certain form.
The resulting model, the iHMT, has only 9 parameters.

A set of \universal" parameters arises naturally from
the form of the iHMT. These nine numbers completely spec-
ify a model for a large class of real-world images, elimi-
nating any need for training in the estimation algorithm
without compromising denoising performance. Having the
model fully speci�ed facilitates the implementation of a
shift-invariant estimation algorithm which o�ers state-of-
the-art performance.

Table 1: Image estimation results for 256� 256 images cor-
rupted with additive white Gaussian noise of �n = 0:1.
Entries are the the peak signal to noise ratio (PSNR),
PSNR := �20 log10(jjbx � xjj2=N). Pixel intensity vales
were normalized between 0 and 1. All results use the
Daubechies-8 wavelet. \R-HMT" is the shift-invariant esti-
mator; \uHMT" uses the \universal" parameters presented
in Section 5; \E-HMT" uses the empirical Bayesian esti-
mator of [4]; \R-Thr" uses a hard thresholded redundant
wavelet transform using the thresholds in [8]

Image R-HMT uHMT E-HMT R-Thr

Baby 29.6 28.9 29.2 29.5
Birthday 26.4 25.8 25.8 25.3
Boats 27.4 26.4 26.5 26.3
Bridge 25.3 24.6 25.0 23.7
Buck 29.6 28.4 28.6 29.7
Building 26.6 25.9 26.3 25.8
Camera 27.0 26.2 26.4 26.3
Clown 27.8 26.8 26.8 26.5
Fruit 29.7 28.5 28.6 29.0
Kgirl 29.3 28.3 28.3 28.4
Lenna 27.6 26.7 26.7 26.3
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